More on Variance and Standard Deviation

Grinnell College

March 26, 2025

Review

On Monday we introduced the **Normal distribution**

The normal distribution is completely determined by two things

- mean (measure of center)
- standard deviation (measure of spread)

Variance

We are going to spend a bit of time today getting a better understanding of variability, which applies to samples in general and not *just* the normal distribution

- How is it defined
- Relationship between variance and standard deviation
- What is it used for?
 - Dispersion
 - Uncertainty
 - Prediction

Later on the idea of variance is going to help us quantify statements such as, "this is the *best guess* we have"

Definitions

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Standard Deviation

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

When standard deviation (variance) is calculated from a sample of data, we will refer to it is the *sample* standard deviation (variance). When standard deviation (variance) is referring to the entire population, we will refer to it is the *population* standard deviation (variance)

The *pop.* std. dev. is most often denoted with σ . Since we may want to use the *sample* std. dev. to estimate the population std. dev., sometimes we will use $\hat{\sigma}$ instead of s

4 / 15

Here n=5, $\overline{x}=5.19$ and $\hat{\sigma}=s=0.81$

Here n=5, $\overline{x}=5.19$ and $\hat{\sigma}=s=0.81$

Grinnell College SST-115 March 26, 2025 8 / 15

Note that the standard deviation is not necessarily affected by the number of observations. Here n=10, $\overline{x}=5.15$, $\hat{\sigma}=0.83$ (\approx same \overline{x} , $\hat{\sigma}$ as before)

 Grinnell College
 SST-115
 March 26, 2025
 9 / 15

Outlier

Outliers make the standard deviation larger. Same data + outlier Now $n=11, \ \overline{x}=5.6$ and $\hat{\sigma}=1.9$

Grinnell College SST-115 March 26, 2025

10 / 15

Interpretation

The direct interpretation of standard deviation is "the average deviation/distance of observations to the mean"

$$n=5$$
, $\overline{x}=5.19$ and $\hat{\sigma}=s=0.81$

s = $.81 \rightarrow$ average deviation of observations from the mean of 5.19 is 0.81 \rightarrow observations are 0.81 away from the mean, on average

Dispersion

Standard Deviation is a measure of spread. We can use it to compare distributions. Both of these have $\mu=100\,$

Grinnell College SST-115 March 26, 2025

12 / 15

Better Centers?

$$\overline{x} = \$13713, \ \hat{\sigma} = \$7208$$

Grinnell College SST-115 March 26, 2025 13 / 15

Better Centers?

$$\overline{x}_{public} = \$8615$$
, $\hat{\sigma}_{public} = \3957
 $\overline{x}_{private} = \17244 , $\hat{\sigma}_{private} = \6829

Std. dev's. of both groups are lower than the overall std. dev. of when they were combined (group observations are closer to their own means)

Main Takeaways

Variance and standard deviation are metrics of dispersion and variability Tell us how far things are from mean Identify outliers
Allows us to see uncertainty based on a point estimate
Allows us to compare different centers to see if they offer improvement