

# Confidence Intervals

## Difference in Means

Grinnell College

Fall 2025

We saw when looking at histograms or boxplots we could compare means or medians to see if groups were different.

- ▶ maybe try to estimate the *difference* between 2 pop. means?

We just saw how to estimate a single pop. mean, let's take what we know to figure this out.

## Example – Waggle Dance

Honeybee scouts investigate new home or food source options; the scouts communicate the information to the hive with a “waggle dance.”

Scientists took bees to an island with only two possible options for nesting: one of very high quality and one of low quality.

They recorded:

- ▶ quality of the sites
- ▶ number of times a bee performed the dance (circuits)

**Research question:** How is the number of waggle circuits related to quality of a nesting site?

- ▶ estimate the difference in pop. mean number of waggle circuits for each nesting site

# Notation

2 groups → need to keep track of info separately for each of them

## Group 1:

- ▶  $\mu_1$  = pop. mean for group 1
- ▶  $\bar{x}_1$  = sample mean for group 1
- ▶  $s_1$  = std. dev. for group 1
- ▶  $n_1$  = sample size for group 1

## Group 2:

- ▶  $\mu_2$  = pop. mean for group 2
- ▶  $\bar{x}_2$  = sample mean for group 2
- ▶  $s_2$  = std. dev. for group 2
- ▶  $n_2$  = sample size for group 2

**Note:** Sometimes we may use A/B for subscripts or use letters that include more context about the groups

## CI for Difference in Means

Our **point estimate** for  $\mu_1 - \mu_2$  is unsurprisingly  $\bar{x}_1 - \bar{x}_2$

Our **SE** formula is more complicated:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Our **df** value is a little different too

- ▶  $df = \min(n_1, n_2) - 1$
- ▶  $\min$ : smaller of the two values

## CI for Difference in Means

**100(1- $\alpha$ )% CI for difference in population means:**

$$\bar{x}_1 - \bar{x}_2 \pm t_{(1-\alpha/2, df)} \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

**Note:**  $df = \min(n_1, n_2) - 1$

## Difference in Means – Interpretation

**CI Interpretation** is a little more involved when we are looking for a difference in means

- ▶ include context
- ▶ mention in some way the order we are comparing means
- ▶ a positive value for the CI indicates  $\mu_1$  is larger than  $\mu_2$ 
  - ▶ a negative value for the CI indicates  $\mu_1$  is smaller than  $\mu_2$

"We are  $100(1-\alpha)\%$  confident that (the difference in population means) is between (lower value) and (upper value)."

## Difference in Means – Interpretation

"We are  $100(1-\alpha)\%$  confident that (the difference in population means) is between (lower value) and (upper value)."

Example: Suppose we have a 90% CI of (-12.3, 24.8)

"We are 90% confident that the difference in population means is between -12.3 and 24.8."

**OR**

"We are 90% confident that the  $\mu_1$  is between 12.3 *lower* and 24.8 *higher* than  $\mu_2$ "

**OR**

"We are 90% confident that the pop. mean for group 1 is between 12.3 *lower* and 24.8 *higher* than the pop. mean for group 2."

## Difference in Means – Conditions

In order to make a  $100(1-\alpha)\%$  CI for the difference in pop. means we need the following to all be true:

- ▶ representative samples
- ▶ normality for group 1 / large enough sample size\*
- ▶ normality for group 2 / large enough sample size\*
- ▶ the *groups* must be independent of each other
  - ▶ ask: do the values from one group influence values for another?
  - ▶ this is not the same thing as saying both groups behave differently