

Hypothesis Testing 4

More Types of Hypothesis Tests

Grinnell College

Hypothesis Test – Single Proportion

$$H_0: p = p_0$$

Under the null hypothesis we have:

$$Z := \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim \mathbf{N}(0,1)$$

- ▶ p-val: use Normal chart with value of Z test-stat

Conditions:

- ▶ Representative sample
- ▶ $n \times p_0 \geq 10$
- ▶ $n \times (1 - p_0) \geq 10$

Hypothesis Test – Difference of Proportions

$$H_0: p_1 - p_2 = 0$$

If $p_1 = p_2$, then both are estimating the same thing.

$$\text{Let } \hat{p}_{pool} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

If we are simulating what the null hypothesis looks like, then

$$Z := \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\frac{\hat{p}_{pool}(1 - \hat{p}_{pool})}{n_1} + \frac{\hat{p}_{pool}(1 - \hat{p}_{pool})}{n_2}}} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}_{pool}(1 - \hat{p}_{pool})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim \mathbf{N}(0,1)$$

- ▶ p-val: use Normal chart with value of Z test-stat

Conditions:

- ▶ Independent Representative samples
- ▶ $n_1 \times \hat{p}_1 \geq 10$ and $n_1 \times (1 - \hat{p}_1) \geq 10$ (Success conditions)
- ▶ $n_2 \times \hat{p}_2 \geq 10$ and $n_2 \times (1 - \hat{p}_2) \geq 10$ (Failure conditions)

Hypothesis Test – Single Mean

$$H_0: \mu = \mu_0$$

The CLT says that $\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$

If we are simulating what the null hypothesis looks like $\rightarrow \bar{x} \sim N(\mu_0, \frac{\sigma}{\sqrt{n}})$

Think back to standardizing. If we standardize a Normal distribution it becomes a Standard Normal distribution $N(0,1)$. So...

$$Z := \frac{\bar{x} - \mu_0}{(\sigma / \sqrt{n})} = \frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma} \sim N(0,1)$$

Issue: we probably don't know σ ...

Hypothesis Test – Single Mean

$$H_0: \mu = \mu_0$$

Conditions:

- ▶ Representative sample
- ▶ Normal population **OR** n large enough (CLT, same rule as before)

Under the null hypothesis we have:

$$T := \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{\sqrt{n}(\bar{x} - \mu_0)}{s} \sim t_{n-1}$$

- ▶ p-val: use t-distribution with $df = n-1$ and value of T

Hypothesis Test – Difference of Means

$$H_0: \mu_1 - \mu_2 = \mu_0 \quad (= 0)$$

Conditions:

- ▶ Representative samples
- ▶ Normal populations **OR** large enough samples (CLT, same as before)

Under the null hypothesis of no difference:

$$T := \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_{\min(n_1, n_2) - 1}$$

- ▶ p-val: use t-distribution with $df = \min(n_1, n_2) - 1$ and value of T