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Review — Describing Distributions

When we saw distributions earlier in the class, they were a way to
represent information from a quantitative variable.

Two of the big things we talked
about were center and spread.

@ Measures of center we used
were median or mean

count

@ Measures of spread we used
; were IQR or std. dev.
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total_bil
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Review — Describing Distributions

Mean is the same thing as the average value of the variable.

2%

n

X =

@ even if a distribution is skewed, the mean can still be useful
» more on this in a sec

Standard Deviation is one of the measures of spread

5:\/n112(x,-—x)2

@ interpretation: the average distance of observations from the mean

@ larger value of s — more variability or spread

@ sometimes variance is used instead (variance = s2)
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Goal for Today

We are going to apply the concept of center and spread (mean and

standard deviation) to the probability distributions concept we saw on
Friday.

@ give names to certain shapes

@ some recurring probability situations
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Review — Probability Distributions

A discrete probability distribution represents each of the disjoint
outcomes of a random process and their associated probabilities

DiceSum 2 3 4 5 6 7 8 9 10 11 12
HH 1 2 3 4 5 6 5 4 3 2 1
Probability 55 35 35 3 36 3 36 36 36 36 36

For a discrete probability distribution to be valid, the following must be
true:

1. The outcomes are disjoint
2. Every probability is between 0 and 1

3. The sum of all probabilities must equal 1
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Review — Probability Distributions

DiceSum 2 3 4 5 6 7 8 9 10 11 12
HH 1 2 3 4 5 6 5 4 3 2 1
Probability 35 35 35 3 3 36 3 36 3 36 36

Probability Distribution
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Random Variable

When working with a random process (like die rolling, or coin flipping) we
can construct a quantitative variable that tells us about the outcome of
that process.

Typically we will label a random variable with capital letters to distinguish
it from data variables in our data sets.

Example 1: rolling a six-sided die
e X = result of die roll (can be 1,2,3,4,5 or 6)
o P(X=6) = ¢

Example 2: coin flip
@ Y =1 if heads, Y = 0 if tails
e P(Y=1)=P(H)=P(T)=P(¥Y=0)=05
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Expectation

When talking about the center of a probability distribution, most often the
mean is used (even if the distribution is skewed). We will use the term
Expected Value to denote that this is an average for a random variable.

To compute the Expected Value, we need to use the outcomes and
account for how likely they are to come up. The expected value of a
random variable X is denoted E(X)

Formula:

E(X) = ZX,'p,'

@ x; represent the value of outcome i

@ p; is the probability associated with outcome i
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Expectation — Example

Let's look at the probability distribution for rolling one 6-sided die.

DieResult 1 2 3 4 5 6
Probability ¢ &+ & t 1 1

Let X = result of roll, then

E(X) = ZXiPi
1

= 1(2) +2(3) +3(5) + 4(g) +5(2) + 6()
21 35
Ay

@ Interpretation: the expected outcome is 3.5

@ Interpretation: If you roll many 6-sided dice and compute the average,
you can expect a value close to 3.5
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Variance

We may also want to talk about the variability of a process. It's nice to

know the average of a d6 is 3.5, but how much variability can | expect
when | roll it?

Working with variance (=s?) is usually easier than std.dev. directly,
although interpretations with std.dev. are easier

@ variance of a random variable is denoted Var(X)
Formula: Let u = E(X).

Var(X) = E[(X — 2] = E(X?) — 12
= (O _xFpi) — i
@ variance = expected squared deviation from the mean

@ we won't do much calculation of Variance directly

@ convert to std.dev. to do interpretations
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Variance Example

Let's go back to the 6-sided die rolling example.

DieResult 1 2 3 4 5 6
Probability ¢ &+ & &t % 1
Let X = result of roll, then
Var(X) = (32 i) — 11
= [2(5) + 22(5) + () + () + 5() + ()] - 357
:%—3.52:%%2.92

@ variance = 2.92 — sd. = +1/2.92=1.71

@ interpretation: a db result is 1.71 away from the mean, on average
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Helpful: Expectation for Multiple RV's

Let's say | wanted to calculate the expected value when I'm working with
multiple dice. When computing the expected value of the sum of things, it
can be time consuming to keep track of all the outcomes. There is a
simpler rule.

Expectation of Sums
Let X and Y be two random variables. Their sum X + Y has expected
value E(X + Y) = E(X) + E(Y)

This works for more than 2 RV's too. The rule makes finding an average
of lots of processes very easy

Grinnell College Stats Fall 2025 12 /24



Sum of Dice Example

Probability Distribution

2 3 4 5 6 7 8 9 10 1 12

Sum

0.15

0.

Prob

i

@

0.00

For rolling 2 dice and adding them up, visually we can see the expected
value (mean) should be 7. Let's use the result from the last slide

@ Let X = result of die 1
o Let Y = result of die 2
@ Let Z = sum of two dice = X + Y
e Then E(Z) = E(X) + E(Y)=35+35=7
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Helpful: Variance Rules

There are also rules for variances similar to expected values when working
with multiple random variables.

e Var(X £ Y) = Var(X) + Var(Y) if X and Y are independent
e Var(X -Y) = Var(X) + Var(Y) if X and Y are independent
e Var(cX) = c?Var(X)

When X and Y associated:
Var(aX 4 bY) = a?Var(X) + b?Var(Y) + 2abE[(X-px)(Y-y)]
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More on Random Variables

Definition: A Random Variable is a variable in which the value is
determined by a random event. Often these are labeled with capital letter
like X and Y.

If we want to be completely thorough, we need to define the sample space
Q (set of all possible outcomes) and the probabilities for each.

There are certain situations which show up repeatedly in probability
applications, and so we will give these distributions special names. These
are governed by parameters, numbers which define a probability structure.

Parameter: A number which determines part or all of a probability
distribution.
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Bernoulli Distribution

X ~ Bernoulli(p)  (parameter = p)

Use: Modeling binary events. Probability of success is defined as p. Let
the outcome "1" denote success, "0" failure.

P(X=1) = p P(X=0) =1—p:=q
PN Y- k=1
P(Xk){q_l_p L
E(X) = > xP(X = x) Var(X) = E(X?) — E(X)?
=Yoo P(X =x) =p = 2L x*P(X =x)-p*=pq

Example: Fair Coin E(X) = 0.5, Var(X) = 0.25
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Binomial Distribution

X ~ Binomial(n, p)
Use: Models the number of successes in n independent Bernoulli trials,
each with probability of success p.

P(X =k) = (})p (1 —p) & k=0,1,...,n

E(X) = Xk—o k (k)P (1 —p)"* Var(X) = np(1 — p)
=np

Example: Rolling a fair die 10 times, counting 6's.
E(X) =10 x § =167, Var(X) =10 x% x 2 ~ 1.39
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Geometric Distribution

X ~ Geometric(p)
Use: Models the number of trials until the first success in independent
Bernoulli trials, each with success probability p.

PX=k)=(1-p)k1p k=123, ...

1.0 ' . p‘=0.2 1 E(X) _

0.8} e p=0.5 o 1 1
<ol ° p=08 | Y k(L=p)Tp = P
%o .

—p

: Var(X) =

0.2 ( ) p2

0.0

Tossing a biased coin (p = 0.6), counting flips until first heads:

1 0.4
E(X) = 06~ 1.67, Var(X) = 0~ 1.11
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Discrete Uniform Distribution

X ~ unif{a,b}
Use: Models equally likely outcomes over the integers from a to b.

1
— . k= 1,...,b
PX=K={b—atl Bathy
0, otherwise
+b b—a+1)2-1
E(X) = : Var(X):( 2+1)

2 12

Example: Roll of a fair die: X ~ unif{1,6}
E(X) = 3.5, Var(X) =2.92
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Poisson Distribution

X ~ Poisson(\)
Use: Models the number of events occurring in a fixed interval of time,
assuming events occur independently at an average rate \.

—AAk
P(X:k):ek' k=012 ...
o Probability mass function
n::’,.', -' I I Io A=1 ‘_ E(X) = 7/\)\1(
o e
= Dok g =
Sl - !
® ::'“ Var(X) =
-\ k
0.10 o >\
| >reo(k2=2%) 0 A

0.00

0 5 10 15 20
I

Example: Number of cars passing a checkpoint in one minute, if A = 4:
E(X) =4, Var(X)=14
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Continuous Random Variables

A continuous random variable can take on values on the real line (not
just discrete points). Its probabilities are described by a probability
density function (pdf) f(x) rather than by a list of discrete probabilities.

For a continuous probability distribution to be valid:
1. f(x) > 0 for all x

2. The total probability is 1: [ f(x)dx =1

. Variance:
Expectation: 9
00 Var(X) = / (x — p)“f(x) dx
E(X):/ x f(x) dx —o0
o where p = E(X)
Stats
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Exponential Distribution

X ~ Exponential(\)
Use: Models the time between independent events occurring at a constant
average rate \.

A — X >
F(x) = e , x>0
0, x <0

Expectation:
o0

E(X) = / xhe M dx =
0

1.4 1
1.2 -
1.0 )\
= 0.8
T

Variance:
Var(X) = / (x — p)?Xe M dx =
0

0.6

0.4

)\2

0.2

0.0
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Continuous Uniform Distribution

X ~ Uniform(a, b)
Use: Outcomes that are equally likely over the continuous interval [a, b].

1 a<x<hb
X
f(x)y=< b—a’ - -
0, otherwise
Expectation:
b
1 a+b
E(X)—/a Xb—adX_ 5
Six)
i Variance:
2 L Var(X) /b( )2 L d
= X — X =
3 A
(b—a)?
_ . 12
0 a b a
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Normal Distribution

X ~ Normal(u, o?)

10 [ [

0.8
0.6
04
0.2
0.0 1 | | I I I I 1 1 1
(x=p)
f(x):m}%e 202 , —00 < Xx <00
Expectation: Variance: -
EX) = [ (o= Var(X) = [ (x = nr(x)x = o
—0o —00
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