

# Regression Error

Grinnell College

Fall 2025

## Review

- ▶ Regression models a linear relationship between response variable  $y$  and explanatory variable  $X$  of the form

$$y = \beta_0 + \beta_1 X + \epsilon$$

- ▶ Can expand this to include combinations of explanatory variables (quant. and cat.)

# Error Terms

$$y = \beta_0 + X\beta_1 + \epsilon$$

Assumptions:

- ▶ Linear relationship between  $X$  and  $y$
- ▶ Error term is normally distributed,  $\epsilon \sim N(0, \sigma)$ 
  - ▶ We needed Normal distributions for means when using t-tests
- ▶ Error *variance* should be the same for all values of  $X$ , i.e., roughly same error for all observations
  - ▶ otherwise something could be going horribly wrong

Graphing the residuals gives us a way to test the assumptions of our model

# Residuals

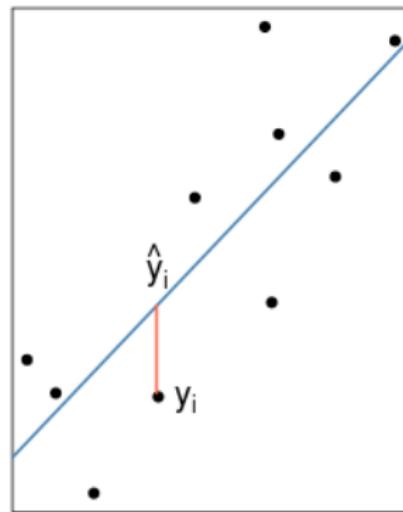
Visually, let's review what residuals look like

- residuals represent how far off our prediction is

Collection of (x, y) points



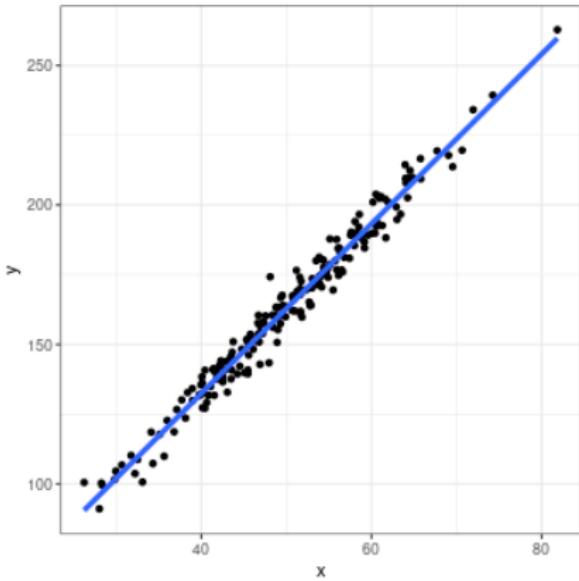
Fitted line with residual



# Residuals and assumptions

Three common ways to investigate residuals visually:

1. Plot histogram of residuals (normality)
2. Plot residuals against a predictor (linear trend, changing variance)
3. Normal Quantile Plot – compares quantiles of residuals to quantiles of Normal distribution to see if they match

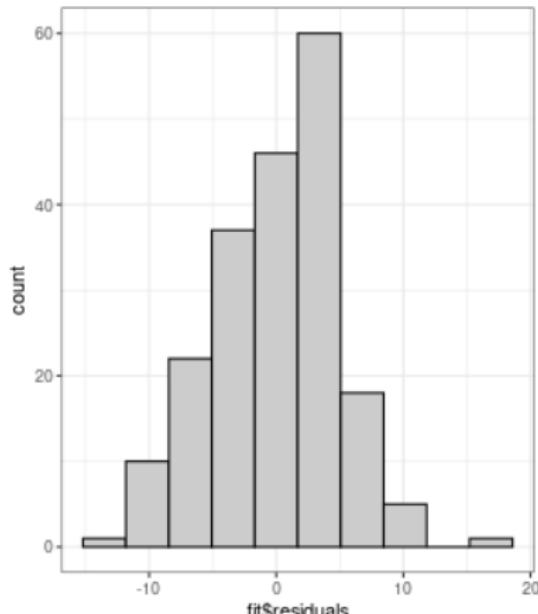
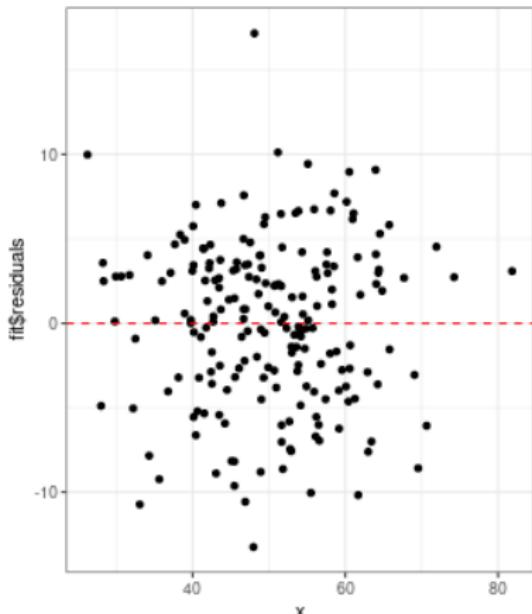


# Checking Normality

Histogram of Residuals should be  $\approx$ Normal if our model is doing well

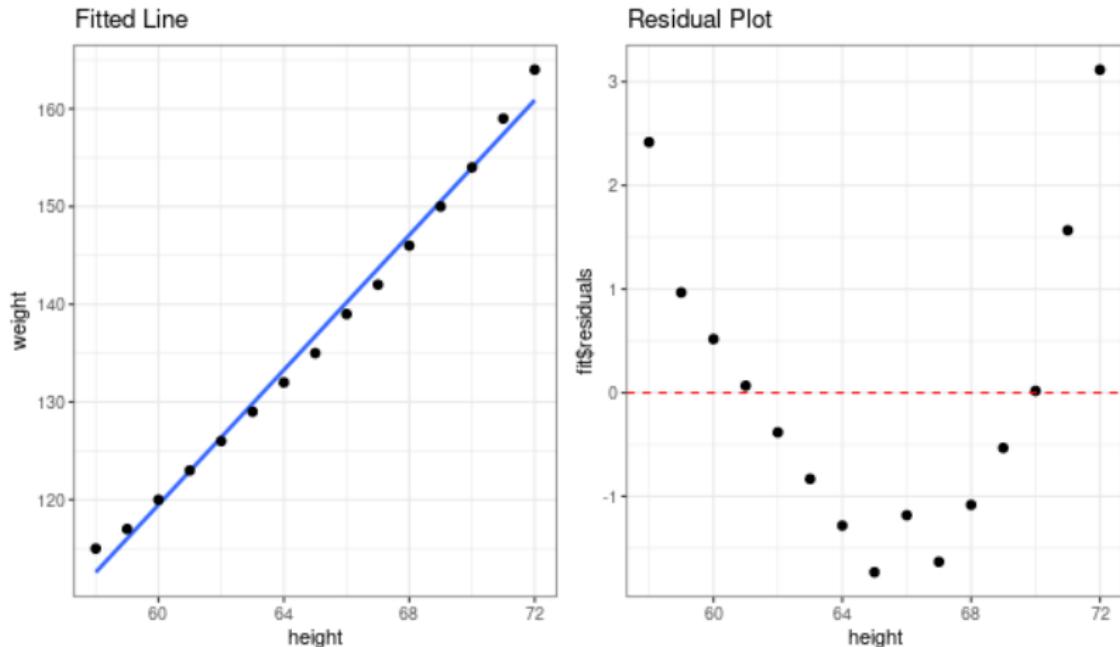
Residuals should not have a pattern other than 'blob of points' in a Resid. vs. Expl. Var. scatterplot

- don't want correlation between residuals and explanatory variables



# Tests of linearity

Residual vs. Explanatory plot makes seeing non-linearity easier

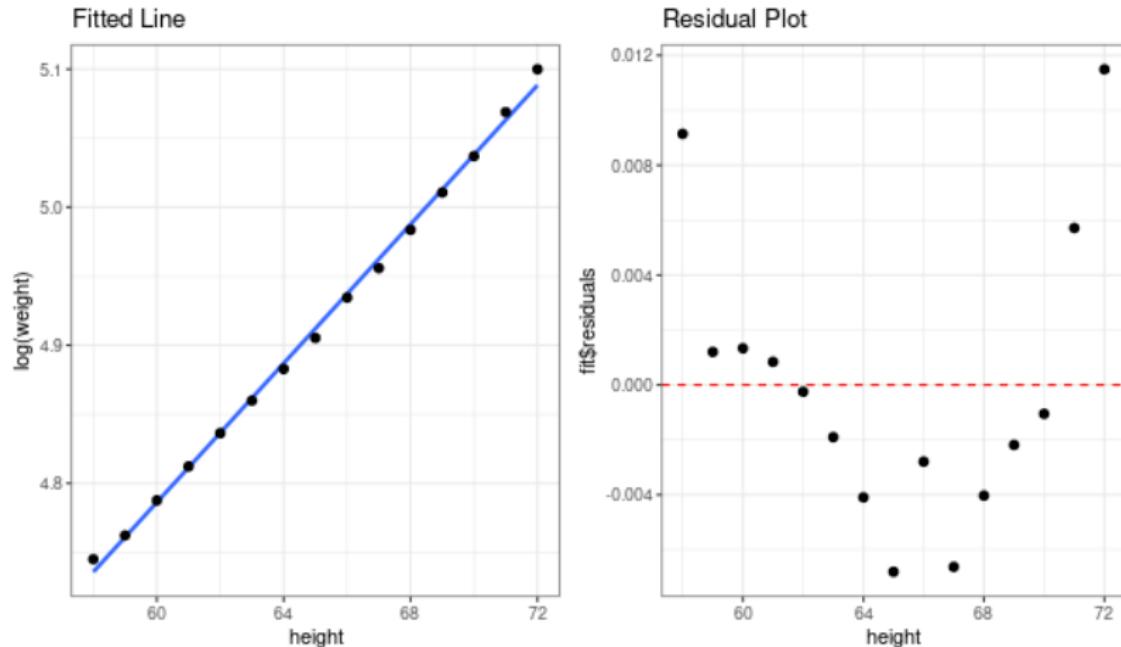


- ▶ linear regression could still be useful!
- ▶ but we could also look at doing something more complicated if we really cared

# Tests of linearity

Sometimes a transformation of a variable can help correct trends  $\rightarrow \log(\text{weight})$

- ▶ better, still have a funky Residual vs. Height plot

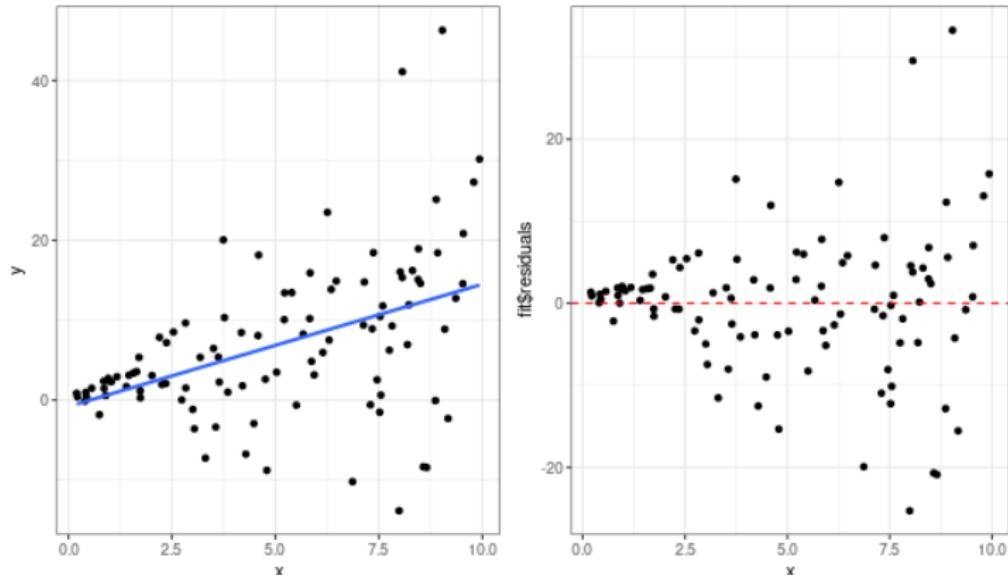


# Heteroscedasticity / Homoscedasticity

Hetero- = different, Homo- = same, scedastic = random

We do not want variance of residuals to increase for really small or really large values of a predictor

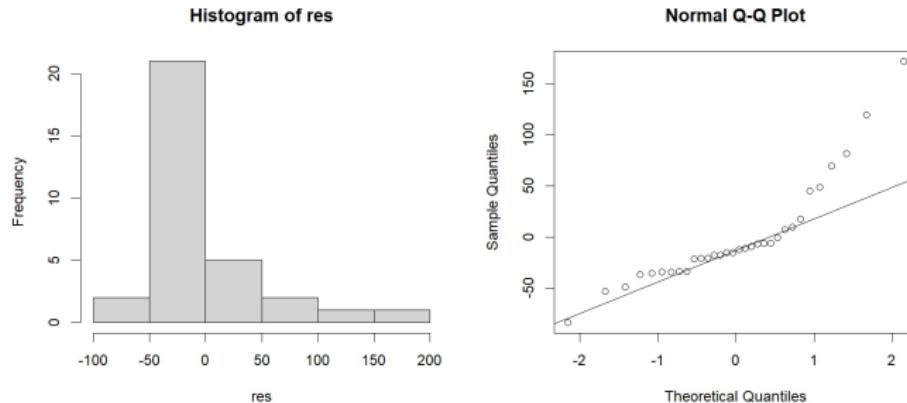
- ▶ This means our residuals start out small but then keep getting bigger → bad!
- ▶ predictions for small values of  $x$  are good, but predictions for large  $x$  are bad



# Normal QQ Plot

A Normal Q-Q plot (Quantile - Quantile) is useful for seeing if our residuals follow a Normal distribution.

- ▶ Normal QQ Plot compares the quantiles of our residuals to what we would expect of a Normal distribution that has the same variance as our residuals ( $\sigma^2 = \text{MSE}$ )



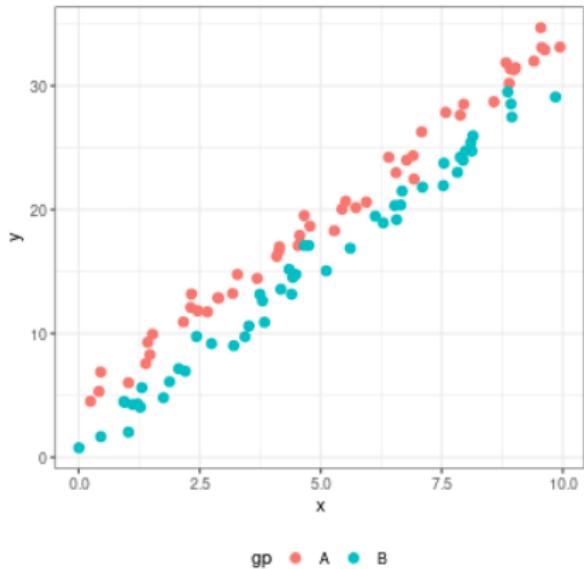
- ▶ Skewed residuals → most of the time residuals are positive/negative (bad), sometimes **really** far off in the other direction (very bad)
- ▶ straight line → Normal distribution seems OK

## Part 2: Investigating Patterns

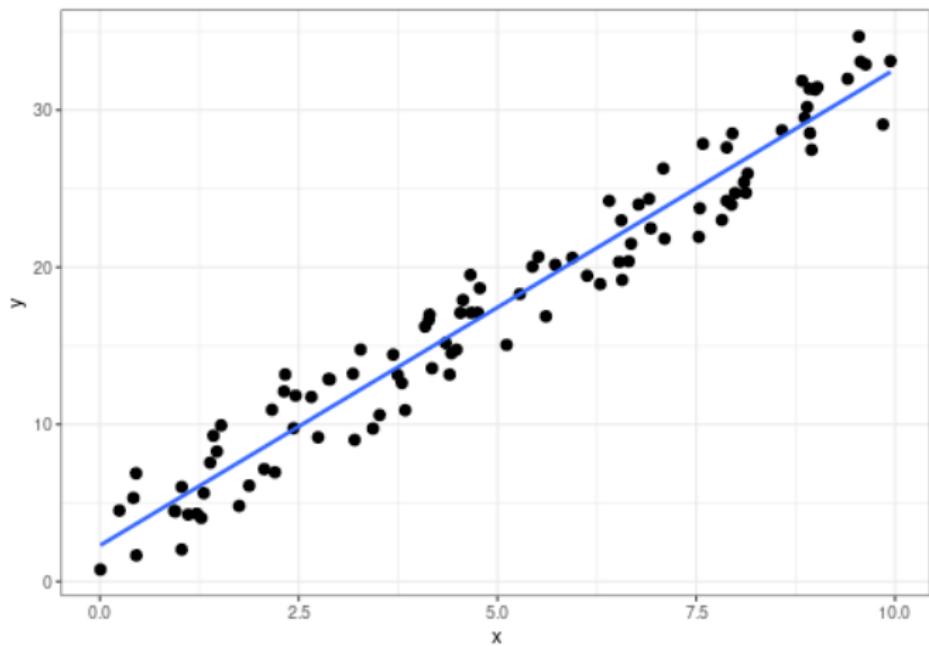
# Considering new covariates

Suppose I have:

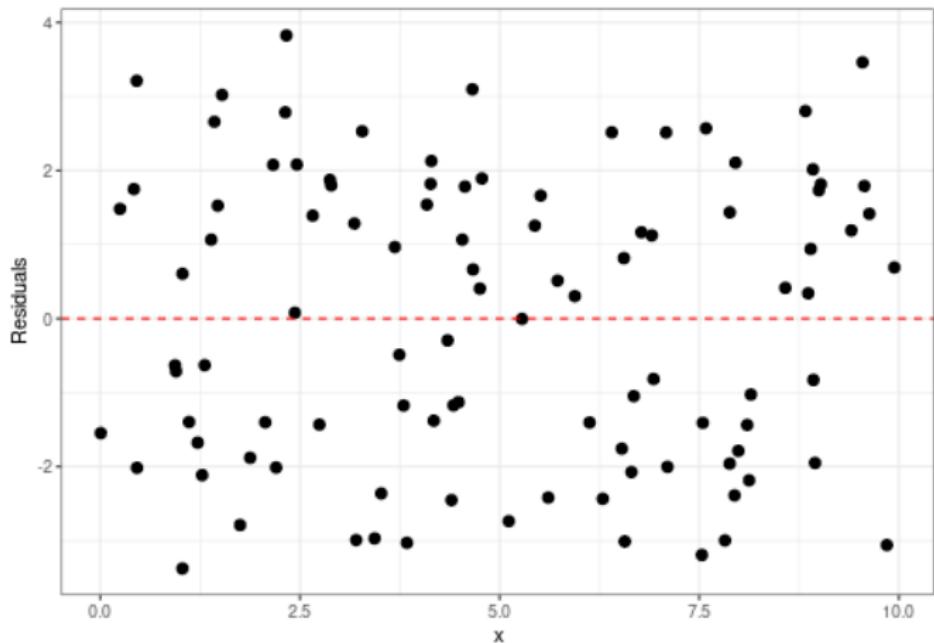
- ▶ Quantitative outcome  $y$
- ▶ Quantitative predictor  $X$
- ▶ Categorical predictor  $gp$



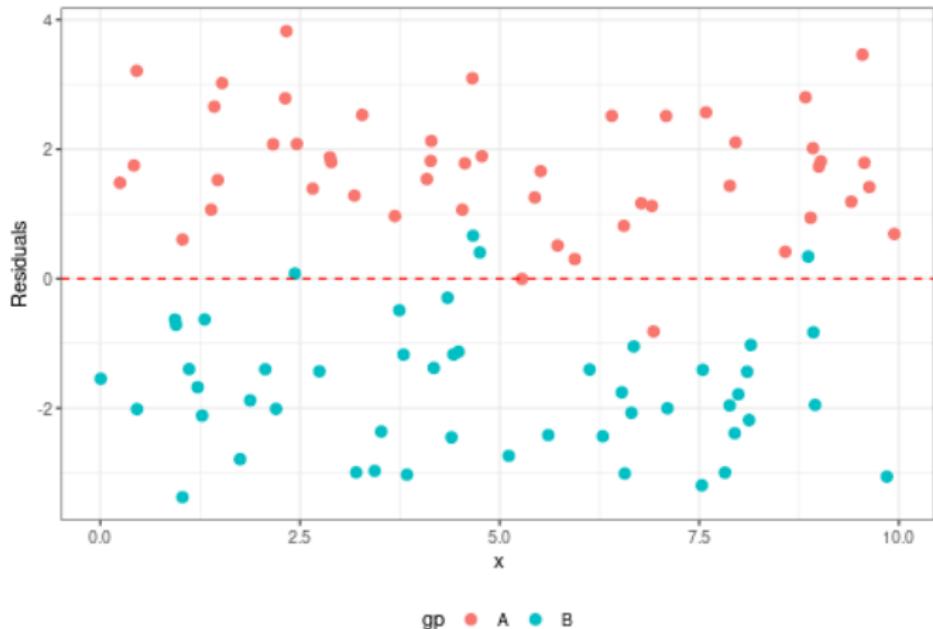
## Considering new covariates



## Considering new covariates

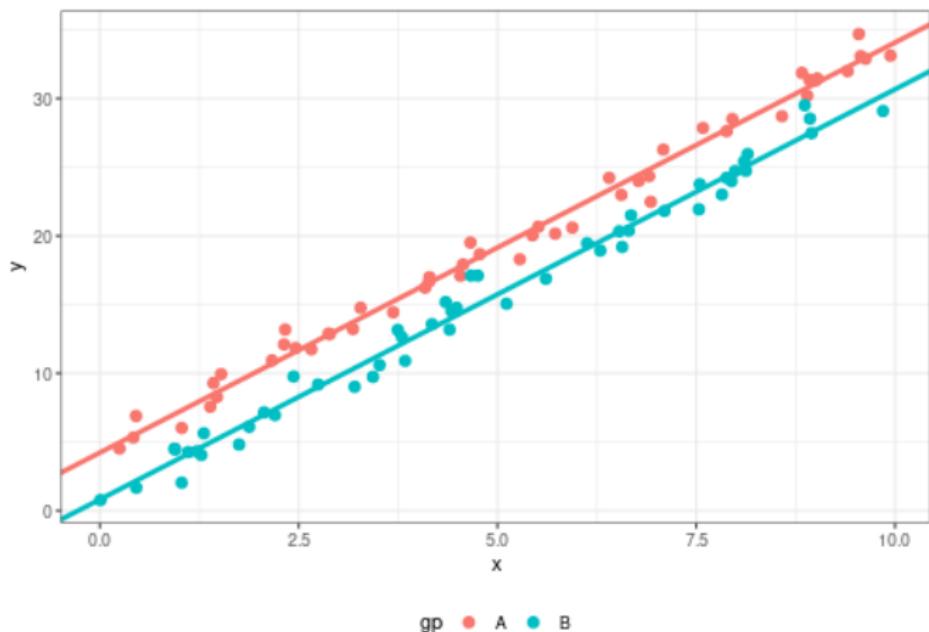


## Considering new covariates



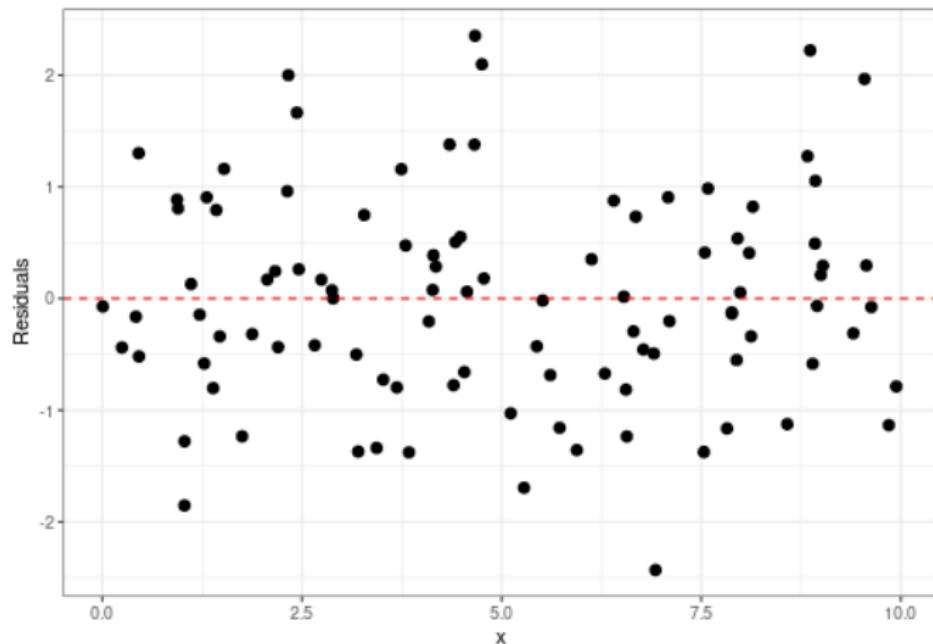
- ▶ Nearly all 'A' observations are under-predicted, all 'B' residuals over-predicted
- ▶ we could use the original scatterplot + color by gp to see pattern
  - ▶ residual plot is easier to quickly cycle through other variables to see patterns

## Considering new covariates



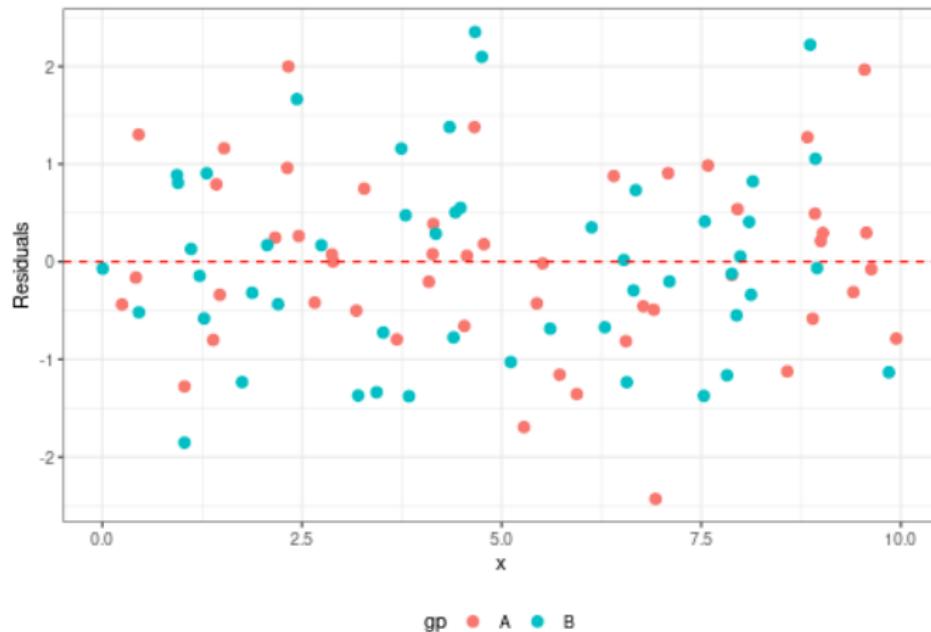
## Considering new covariates

these residuals are from the model that *also* includes the gp variable



## Considering new covariates

if we color by 'gp' we see that the pattern is now random about 0



- ▶ indicates this model does better than previous one

## Correlated Covariates

Consider a simple linear model in which a covariate  $X$  is used to predict some value  $y$

$$\hat{y} = \hat{\beta}_0 + X\hat{\beta}_1$$

The residuals associated with this describe the amount of variability that *is yet to be explained*

$$e = y - \hat{y}$$

The idea is to find new covariates *associated* with this residual, in effect “mopping up” the remaining uncertainty

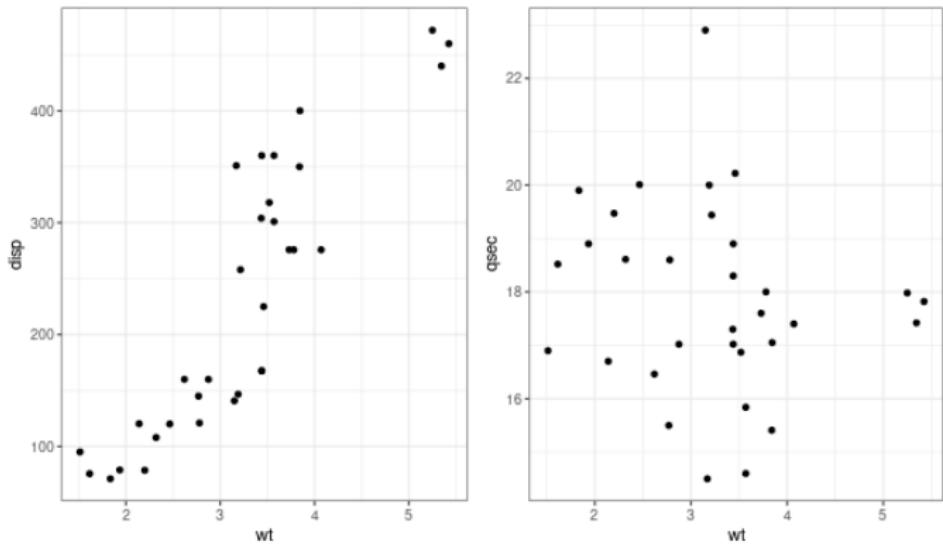
## Considering new covariates

Wednesday we considered an example predicting vehicle fuel economy (mpg) with three separate models:

1. Using weight
2. Using weight and engine displacement
3. Using weight and quarter mile time (in seconds)

## Correlated Covariates

Let's say I have a regression using `wt` to predict `mpg`. We are looking for a new variable to add to the model. Which of these would be better to use?



- ▶ because `wt` and `disp` are correlated, much of the info in `disp` is already contained within `wt` → probably not much improvement if we add it
- ▶ rephrased: knowing about `wt` already gives us a good idea of `disp` values → `disp` is not useful if we are already using `wt`

# Correlated Covariates

## Predicting mpg with wt

```
1 > lm(mpg ~ wt, mtcars) %>% summary()
2             Estimate Std. Error t value      Pr(>|t|) 
3 (Intercept) 37.285     1.878   19.86 < 0.000002 *** 
4 wt          -5.344     0.559   -9.56  0.000013 *** 
5 R-squared = 0.75
```

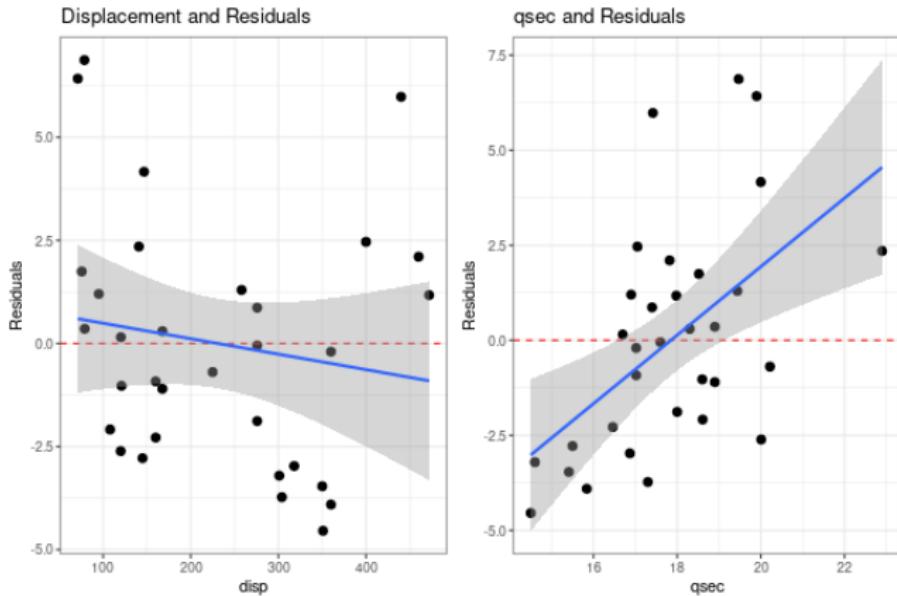
## Add displacement to original

```
1 > lm(mpg ~ wt + disp, mtcars) %>% summary()
2             Estimate Std. Error t value      Pr(>|t|) 
3 (Intercept) 34.96055   2.16454   16.15 0.000000049 *** 
4 wt          -3.35083   1.16413   -2.8   0.0074   ** 
5 disp        -0.01772   0.00919   -1.93  0.0636 .  
6 R-squared = 0.78
```

## Add qsec to original

```
1 > lm(mpg ~ wt + qsec, mtcars) %>% summary()
2             Estimate Std. Error t value      Pr(>|t|) 
3 (Intercept) 19.746     5.252    3.76    0.00077 *** 
4 wt          -5.048     0.484   -10.43 0.00000000025 *** 
5 qsec        0.929     0.265    3.51    0.00150   ** 
6 R-squared = 0.82
```

# Residual Plots



- ▶ both of these residuals are made with model that does not use either disp or qsec
- ▶ We just saw 'qsec' would be better to add to the model → corresponds to a linear pattern in the residuals

# Key Takeaways

1. Number of assumptions for linear model
  - ▶ Linearity
  - ▶ Normal errors
  - ▶ Homoscedasticity
2. Residual plots can help determine which new variables to add to model
3. Examining errors is an effective way to test assumptions