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Review

P> Regression models a linear relationship between response variable y
and explanatory variable X of the form

y=po+ X +e

» Can expand this to include combinations of explanatory variables
(quant. and cat.)
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Error Terms

y =P80+ XpB1+e¢

Assumptions:

P Linear relationship between X and y
» Error term is normally distributed, e ~ N(0, o)
> We needed Normal distributions for means when using t-tests

» Error variance should be the same for all values of X, i.e., roughly
same same error for all observations

» otherwise something could be going horribly wrong

Graphing the residuals gives us a way to test the assumptions of our model
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Residuals

Visually, let's review what residuals look like

> residuals represent how far off our prediction is

Collection of (x, y) points

Fitted line with residual
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Residuals and assumptions

Three common ways to
investigate residuals visually:

1. Plot histogram of residuals
(normality)

2. Plot residuals against a
predictor (linear trend,
changing variance)

3. Normal Quantile Plot — 1501
compares quantiles of
residuals to quantiles of
Normal distribution to see if
they match P
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Checking Normality

Histogram of Residuals should be ~Normal if our model is doing well

Residuals should not have a pattern other than 'blob of points’ in a Resid.

vs. Expl. Var. scatterplotplot

> don't want correlation between residuals and explanatory variables
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Tests of linearity

Residual vs. Explanatory plot makes seeing non-linearity easier

Fitted Line

height

» linear regression could still be useful!

60 64 8 72

fit§residuals

Residual Plot

» but we could also look at doing something more complicated if we really cared

Grinnell College

STA-209

Fall 2025 7/24



Tests of linearity

Sometimes a transformation of a variable can help correct trends — log(weight)

» better, still have a funky Residual vs. Height plot

Fitted Line Residual Plot
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Heteroscedasticity / Homoscedasticity

Hetero- = different, Homo- = same, scedastic = random
We do not want variance of residuals to increase for really small or really large
values of a predictor

» This means our residuals start out small but then keep getting bigger — bad!

» predictions for small values of x are good, but predictions for large x are bad
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Normal QQ Plot

A Normal Q-Q plot (Quantile - Quantile) is useful for seeing if our
residuals follow a Normal distribution.
» Normal QQ Plot compares the quantiles of our residuals to what we
would expect of a Normal distribution that has the same variance as
our residuals (02 = MSE)

Histogram of res Normal Q-Q Plot
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» Skewed residuals — most of the time residuals are positive/negative
(bad), sometimes really far off in the other direction (very bad)
> straight line — Normal distribution seems OK
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Part 2: Investigating Patterns
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Considering new covariates

(1)
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Suppose | have: o of
» Quantitative outcome y R 3 Rt
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» Quantitative predictor X ey’
> Categorical predictor gp 1 g "’
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Considering new covariates
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Considering new covariates
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Considering new covariates
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> Nearly all "A’" observations are under-predicted, all ‘B’ residuals

over-predicted

» we could use the original scatterplot 4 color by gp to see pattern

> residual plot is easier to quickly cycle through other variables to see patterns

STA-209

Fall 2025

15 /24



Considering new covariates

Y 75 50 75 100

gp * A B
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Considering new covariates

these residuals are from the model that also includes the gp variable
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Considering new covariates

if we color by 'gp’ we see that the pattern is now random about 0
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Correlated Covariates

Consider a simple linear model in which a covariate X is used to predict
some value y

9 = Bo+Xp1

The residuals associated with this describe the amount of variability that is
yet to be explained

e=y—Jy

The idea is to find new covariates associated with this residual, in effect
“mopping up” the remaining uncertainty
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Considering new covariates

Wednesday we considered an example predicting vehicle fuel economy
(mpg) with three separate models:

1. Using weight
2. Using weight and engine displacement

3. Using weight and quarter mile time (in seconds)
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Correlated Covariates

Let’s say | have a regression using wt to predict mpg. We are looking for a
new variable to add to the model. Which of these would be better to use?

disp
]
.
qseC
.
.
.
.

» because wt and disp are correlated, much of the info in disp is already
contained within wt — probably not much improvement if we add it

» rephrased: knowing about wt already gives us a good idea of disp values —
disp is not useful if we are already using wt
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Correlated Covariates

Predicting mpg with wt

1 > Im(mpg ~ wt, mtcars) %>% summary ()

2 Estimate Std. Error t value Pr(>|t])

3 (Intercept) 37.285 1.878 19.86 < 0.000002 *x*x*
4 wt -5.344 0.559 -9.56 0.000013 =x*%
5

R-squared = 0.75

Add displacement to original

1 > Im(mpg ~ wt + disp, mtcars) %>% summary ()

2 Estimate Std. Error t value Pr(>|t])

3 (Intercept) 34.96055 2.16454 16.15 0.000000049 *x=
4 wt -3.35083 1.16413 -2.8 0.0074 *=*
5 disp -0.01772 0.00919 -1.93 0.0636

6 R—squared = 0.78

Add gsec to original

1> Im(mpg ~ wt + gsec, mtcars) %$>% summary ()

2 Estimate Std. Error t value Pr(>t])

3 (Intercept) 19.746 5.252 3.76 0.00077 **%
4 wt -5.048 0.484 -10.43 0.000000000025 *xx*
5 gsec 0.929 0.265 3.51 0.00150 ==

6 R—squared = 0.82
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Residual Plots

Displacement and Residuals

Residuals

Residuals

gsec and Residuals

» both of these residuals are made with model that does not use either

disp or gsec

> We just saw 'gsec’ would be better to add to the model —
corresponds to a linear pattern in the residuals
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Key Takeaways

1. Number of assumptions for linear model
> Linearity
> Normal errors
» Homoscedasticity

2. Residual plots can help determine which new variables to add to
model

3. Examining errors is an effective way to test assumptions
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