## Simple Linear Regression

Grinnell College

September 25, 2024

#### Review

- Scatterplot descriptions
  - form, strength, direction
- Pearson's correlation (r)
  - strength and direction of linear relationship for 2 quant. variables
- ▶ Spearman's correlation  $(\rho)$ 
  - strength and direction of monotone relationship
  - more robust to outliers

Grinnell College SST-115 / STA-209 September 25, 2024 2 / 26

### Basic Idea

**Regression** is a technique that we can use when there is a linear relationship between 2 quantitative variables.

**Regression** = creating a line on the scatterplot that best represents the linear relationship we see.

**Goal**: use the explanatory variable to predict values for the response variable.

- the variable being predicted is the response
- the variable we are using to predict is the explanatory variable ('predictor')

### Basic Idea

We are going to create a line on the scatterplot that best represents the linear relationship we see.

#### **Algebra**

y = mx + b

m = slope: change in y over the change in x (rise / run)

b = intercept: value where the line cross the y-axis

All points fall exactly on the line

#### **Statistics**

$$\hat{y} = \beta_0 + \beta_1 X$$

$$\beta_1 = \mathsf{slope}$$

$$\beta_0 = intercept$$

Not all of our data points will exactly on the line ightarrow variability

#### How it works

Canidae data set (predicting bite force using body mass)



The **regression line** is the line that fits through the data points.

- y's denote the values of the datapoints for the response variable
- **Proof** points on the line are predicted values for the y's, denoted as  $\hat{y}$
- **residual**: difference between data and predictions  $(\mathbf{e} = y \hat{y})$

Grinnell College SST-115 / STA-209 September 25, 2024 5 / 26

### How it works



The regression line is the line that best fits through the data

- critera: minimizes sum of squared residuals  $\sum e_i^2$
- $\hat{y} = b_0 + b_1 X$  (regression equation)
- $ightharpoonup b_1 = \left(\frac{s_x}{s_y}\right)r$  (slope)
- $b_0 = \overline{y} b_1 \overline{x} (intercept)$

# Pearson's Height Data

| -      | Mean  | Std.Dev. | Correlation $(r_{xy})$ |
|--------|-------|----------|------------------------|
| Father | 67.68 | 2.74     | 0.501                  |
| Son    | 68.68 | 2.81     | 0.501                  |

| Father | Son  |
|--------|------|
| 65.0   | 59.8 |
| 63.3   | 63.2 |
| 65.0   | 63.3 |
| 65.8   | 62.8 |
| 61.1   | 64.3 |
| 63.0   | 64.2 |
| :      | :    |
|        |      |



## Pearson's Height Data

We could calculate our regression line using info from this table.

|        | Mean  | Std.Dev. | Correlation $(r_{xy})$ |
|--------|-------|----------|------------------------|
| Father | 67.68 | 2.74     | 0.501                  |
| Son    | 68.68 | 2.81     | 0.501                  |

#### Regression equation:

$$\hat{y}=b_0+b_1X$$

$$b_0 = \left(\frac{s_x}{s_y}\right)r$$
$$= \left(\frac{2.81}{2.74}\right)0.501 = 0.514$$

$$b_1 = \overline{y} - b_1 \overline{x}$$
  
= 68.68 - 0.514 \* 67.68 = 33.893

## Pearson's Height Data - Plot Line

We can make R graph the line on our scatterplot.



## Pearson's Height Data - Prediction

The formula for the regression line

$$\hat{y} = b_0 + Xb_1$$

can be expressed in terms our our original variables and what we wish to predict

$$\widehat{\mathsf{Son's}}$$
 Height =  $33.9 + 0.51 \times \mathsf{Father's}$  Height

Given the Father's height, we can predict the son's height using this equation by plugging in a value for the father's height

**Example**: Predict the height of the son for a father with a height of 65in.

Son's Height = 
$$33.9 + 0.51 \times 65.0 = 67.30$$
 in.

## Pearson's Height Data - Prediction

Predicted Son's Height = 67.30 inches for a father with height = 65in

▶ Check to see if our prediction makes sense on the graph



### Residual

A Residual is the difference between an observed value and a prediction

- ▶ often labeled as **e** ("error", r is taken)
- ightharpoonup e = y  $\hat{y}$

**Interpretation**: the residual tells us whether we have over- or under-predicted the values for the response variable in our data (and by how much)

- ightharpoonup positive value ightarrow under-predicted
- ightharpoonup negative value ightarrow over-predicted

## Pearson's Height Data - Residual

In our data set, the first father had a height of 65 inches. We can calculate the residual for this father. We predicted the son's height to be 67.30 inches.

| $e = y - \hat{y}$                   |
|-------------------------------------|
| = observed value - predicted value  |
| = 59.8 in. $-67.30$ in. $=-7.5$ in. |

**Interpretation**: We overpredicted the height of this particular son by 7.5 inches

| Father | Son  |
|--------|------|
| 65.0   | 59.8 |
| 63.3   | 63.2 |
| 65.0   | 63.3 |
| 65.8   | 62.8 |
| 61.1   | 64.3 |
| 63.0   | 64.2 |
| :      | :    |
| •      |      |

## Slope Interpretation

Regression equation:  $\hat{y} = b_0 + b_1 X$ 

The **slope**  $(b_1)$  tells us how our predictions change when we use different values for the explanatory variable.

### Interpretation 1:

For each 1 unit change in the explanatory variable (x), the predicted value of the response variable (y) will change by [value of slope].

### Interpretation 2:

For each 1 unit change in the explanatory variable (x), the value of the response variable (y) will change by the [value of slope], on average.

### Intercept Interpretation

Regression equation:  $\hat{y} = b_0 + b_1 X$ 

The **intercept**  $(b_0)$  is the value where our line crosses the y-axis.

**Interpretation**: When the explanatory variable (x) is zero, we predict the response variable (y) to have a value of [intercept value].

Ask yourself: Does the intercept interpretation make sense?

- Is the intercept value actually possible for our response variable?
- Does it make sense to make a prediction using zero for the explanatory variable?

## Pearson's Height Data – Interpretations

$$\widehat{\mathsf{Son's Height}} = 33.9 + 0.51 \times \mathsf{Father's Height}$$

### **Slope Interpretation:**

For each 1 inch change in Father's height, the prediction for son's height changes by 0.51 inches.

-OR-

For each 1 inch change in Father's height, the son's height changes by 0.51 inches, *on average*.

#### Intercept Interpretation:

When the father's height is zero inches, the predicted height for the son is 33.9 inches.

does this make sense?

16/26

## Intercept and Extrapolation

$$\widehat{\mathsf{Son's Height}} = 33.9 + 0.51 \times \mathsf{Father's Height}$$



**Extrapolation** means making predictions for values outside of our data

➤ These predictions are unreliable, since we don't know if the relationship is true for these values

17/26

Grinnell College SST-115 / STA-209 September 25, 2024

### Extrapolation

In 2004, an article was published in *Nature* titled "Momentous sprint at the 2156 Olympics." The authors plotted the winning times of men's and women's 100m dash in every Olympic contest, fitting separate regression lines to each; they found that the two lines will intersect at the 2156 Olympics. Here are a few of the headlines:

- ► "Women 'may outsprint men by 2156" BBC News
- "Data Trends Suggest Women Will Outrun Men in 2156" Scientific American
- "Women athletes will one day out-sprint men" The Telegraph
- "Why women could be faster than men within 150 years" The Guardian

18 / 26

### Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.



Grinnell College SST-115 / STA-209 September 25, 2024

19 / 26

## 12 years of data later



### Asymmetry

Unlike correlation, where  $r_{xy} = r_{yx}$  (whether you put the variables on the x- or y-axes doesn't matter) regression is *asymmetrical*: the choice of explanatory and response variables matter for the line



## Assessing Quality of Fit

The less variability there is for the points around the regression line, the better the line fits the data. (More variability  $\to$  worse fit)



## Assessing Quality of Fit

With this in mind, we can quantify how well the line fits the data using:

### Coefficient of determination $(R^2)$

measures how close the observations match the predictions

$$R^{2} = \frac{\text{variance of predicted y's}}{\text{variance of observed y's}} = \frac{s_{\hat{y}}^{2}}{s_{y}^{2}}$$

- ▶ ratio written as decimal or percentage between 0% and 100%
- larger values indicate better fit, stronger linear relationship between the variables

### Interpretation:

 $R^2$  is the percentage of variation in the observed values of the response variable (x) that can be explained with the linear regression model including the explanatory variable (y). [include context]

## Assessing Quality of Fit

We also saw that the **correlation coefficient (r)** can be used to quantify the strength of the linear relationship.

There is a connection between r and  $R^2$ .

- $r^2 = R^2$
- ightharpoonup  $r=\pm\sqrt{R^2}$  (need to find the correct sign using scatterplot / slope)

# $R^2$ Interpretation

The correlation coefficient for the Pearson Height data is r = 0.501

$$R^2 = r^2 = .501^2 = 0.251$$

**Interpretation**: "25.1% of the variation in son's height can be explained using our linear regression with father's height as the predictor."

 $\to 25.1\%$  of the differences in height for sons is because of the their father's height. 74.9% of their differences in height is because of other stuff

#### Review

#### We should be able to

- Use a line to describe a linear relationship
- ▶ Be able to predict an outcome, given a predictor
- Interpret the slope (and intercept if applicable)
- Assess the quality of a fitted line using  $R^2$