Linear Regression – Categorical Predictors

Grinnell College

September 27, 2024

Review

$$\hat{y} = b_0 + b_1 X$$

On Wednesday, we spent some time talking about linear regression. Basically a fancy way of putting a line on a scatterplot to describe the relationship between variables.

- Only works when there is a *linear* relationship
- ► There are formulas for slope and intercept (use R!)
- Use line to make predictions
- Interpret the slope and intercept (if applicable)
- $ightharpoonup R^2$ and r

Review

('mpg' dataset) Highway miles per gallon vs. City miles per gallon for vehicles

Categorical predictor?

What if my explanatory variable was categorical? Can we use linear regression?

Consider how data is stored in our data frames in R

Model	Transmission
audi a4	auto
audi a4	manual
chevrolet c1500 suburban 2wd	auto
dodge dakota pickup 4wd	auto
ford explorer 4wd	manual
hyundai sonata	auto

How might these be used in regression?

force Transmission variable to be quantitative?

6/18

Indicator Variables: are a new variable we make that **indicates** whether an observation belongs to a specific category or not

- sometimes called 'Dummy variables'
- ▶ 1 indicates an observation is in the category
- ▶ 0 indicates an observation is **not** in the category

Model	Trans
audi a4	auto
audi a4	manual
chevrolet c1500	auto
dodge pickup 4wd	auto
ford explorer 4wd	manual
hyundai sonata	auto

Model	Manual	Auto
audi a4	0	1
audi a4	1	0
chevrolet c1500	0	1
dodge pickup 4wd	0	1
ford explorer 4wd	1	0
hyundai sonata	0	1

Indicator Variables are often denoted with a stylistic "1" and a subscript to denote the original variable name

Model	Manual	Auto
audi a4	0	1
audi a4	1	0
chevrolet c1500	0	1
dodge pickup 4wd	0	1
ford explorer 4wd	1	0
hyundai sonata	0	1

$$\mathbb{1}_{\mathsf{Manual}} = egin{cases} 1 & \mathsf{if} \ \mathsf{Manual} \\ 0 & \mathsf{if} \ \mathsf{Automatic} \end{cases}$$

$$\mathbb{1}_{\mathsf{Automatic}} = \begin{cases} 1 & \text{if Automatic} \\ 0 & \text{if Manual} \end{cases}$$

Maybe we can make predictions for groups using their averages?

Model	Manual	Auto	cty
audi a4	0	1	18.250
audi a4	1	0	19.667
chevy c1500	0	1	12.800
dodge pickup	0	1	12.500
ford explorer	1	0	15.000
hyundai sonata	0	1	19.000

Transmission	Average City MPG
auto	16.370
manual	18.457

$$\widehat{\text{City mpg}} = 16.370 \times \mathbb{1}_{\text{Automatic}} + 18.457 \times \mathbb{1}_{\text{Manual}}$$

Grinnell College SST-115 / STA-209

Linear Model in R

By default, the first indicator will be absorbed into the intercept, making it the reference variable

```
1 > lm(cty ~ trans, mpg2)
2
3 Coefficients:
4 (Intercept) transmanual
5 16.37 2.09
```

Compare equations:

$$\begin{split} \widehat{\text{City mpg}} &= 16.37 \times \mathbb{1}_{\text{Automatic}} + 18.457 \times \mathbb{1}_{\text{Manual}} \\ \widehat{\text{City mpg}} &= 16.37 + 2.09 \times \mathbb{1}_{\text{Manual}} \end{split}$$

More than 2 categories?!

What are my indicator variables of

What are my indicator variables going to look like?

model	cty	drv
new beetle	21	f
gti	19	f
mustang	18	r
grand cherokee 4wd	11	4
sonata	21	f
civic	24	f
toyota tacoma 4wd	15	4

Categories of 'drv': 4-wheel drive (4), rear-wheel drive (r), front-wheel drive (f)

Categories of 'drv': 4-wheel drive (4), rear-wheel drive (r), front-wheel drive (f)

What are my indicator variables going to look like?

model	cty	drv
new beetle	21	f
gti	19	f
mustang	18	r
grand cherokee	11	4
sonata	21	f
civic	24	f
toyota tacoma	15	4

model	cty	drvf	drvr	drv4
new beetle	21	1	0	0
gti	19	1	0	0
mustang	18	0	1	0
grand cherokee	11	0	0	1
sonata	21	1	0	0
civic	24	1	0	0
toyota tacoma	15	0	0	1

Categories of 'drv': 4-wheel drive (4), rear-wheel drive (r), front-wheel drive (f)

- ▶ What is the reference variable
- Equation for line?
- ► Interpretation of intercept? Slope?
- What is the average city mileage for:
 - 4-wheel drive?
 - Front-wheel drive?
 - Rear-wheel drive?

Extending to Multiple Variables

Here we have the average city miles per gallon for each combination of drive train and transmission

Transmission	4wd	fwd	rwd
Automatic	13.85	19.11	13.29
Manual	15.61	21.34	15.75

trans · auto · manual

Extending to Multiple Variables

```
1 > lm(cty ~ drv + trans, mpg)
3 Coefficients:
  (Intercept)
                       drvf
                                     drvr
                                           transmanual
       13.77
                       5.40
                                    -0.35
                                                   2.07
```

- What is the reference variable
- Equation for line?
- Interpretation of intercept? Slope?
- What is the average city mileage for:
 - Automatic 4-wheel drive?
 - Manual Front-wheel drive?

Observed vs Predicted Means

Observed:

Transmission	4wd	fwd	rwd
Automatic	13.85	19.11	13.29
Manual	15.61	21.34	15.75

Predicted:

Transmission	4wd	fwd	rwd
Automatic	13.76	19.17	13.42
Manual	15.83	21.24	15.49

trans

- auto
- manual