Normal Distributions J

Grinnell College

October 14, 2024

Grinnell College Introduction to Statistics October 14, 2024 1/27



Review — Inference
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BIG IDEA: Parameter value is unknown — we use the statistic to
estimate it
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Review — Sampling Distribution

If we had the ability to make many different samples we could plot the

statistics from each.

» This gives us an idea of the variability of the statistics
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The Standard Error is the std. dev. of the sampling distribution

P> measures variability of statistics
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Sampling Distribution

To make the sampling distribution, we had to take a whole lot of different
samples.

> Are there any issues with this?

» Would you actually want to go and take 5,000 different samples?
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What now?

Ok, so we can't just go and take a whole bunch of random samples...

This means we can't get the standard error!

P> so we can't actually quantify how far the statistic away is? Wasn't
that the whole point?!

What the heck do we do now?
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Sampling Distribution Shape

All hope is not lost. Think back to the shape of the sampling distribution.

Big question: What happened to the shape of the sampling distribution as
the sample size increased?
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Movie Budgets Example
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Bell-shaped Distribution
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The bell-shaped distribution we see in the sampling distribution for Movie
Budgets is something that happens a lot.

It turns out there is a reason for that, which we will cover shortly.

For now, we are going to give it a special name, and see what we can do
with it.
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The Normal Distribution
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Normal Distribution

It turns out we only need to know two things in order to completely
describe the Normal distribution

1. the mean (u)

2. the standard deviation (o) or variance ()

These will tell us where the center of the normal distribution is and how
stretched out it should be.

If a variable looks like a normal distribution, we will often use the following
notation to say that:

> X~ N(u, 0?)
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Normal Distribution

X ~ N(u, o)
» the mean tells us where the center of the normal distribution is

» the variance tells us how spread out the distribution is

N(u, o°)
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Examples

Mormal Distributions
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Standard Normal Distribution

When a normal distribution has mean zero and variance equal to 1, we call
it a Standard Normal Distribution and write X ~ N(0, 1).

Why? It's related to standardizing variable like we did with Z-scores.

Suppose the variable X ~ N(u, 02),
then Y = X ~ N(u =0, 62 = 1)

g

In other words, if we standardize a normal variable (with any mean and
variance) then we get back a normal variable that has =0 and 02 =1
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Probabilities

Probabilities

If our population follows a normal distribution... we can pick a case at
random from our population

» probability the observation is less/greater than some value?

> probability the observation is between two values?

Note: It turns out that using a normal distribution we cannot find the

probability of the case having a *specific* value, we can only use ranges of
values.
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Probabilities — Less than

Standard Normal: X ~ N(0, 1)
Probability a randomly selected observation is below (less than) -1?

=1 P(X<x) = v || 0.15866
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We can write this using our probability notation: P(X < -1) = 0.15866
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Probabilities — Greater than

Standard Normal: X ~ N(0, 1)
Probability a randomly selected observation is above (greater than) 0.437

z = 43 P(X > x) = «|l 03336
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P(X > 0.43) = 0.3336
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Probabilities — Between

Standard Normal: X ~ N(0, 1)
What about the probability that a case falls between -1 and 17

04
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We need to do a bit more work...
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Probabilities — Between

Standard Normal: X ~ N(0, 1)
What about the probability that a case falls between -1 and 17

z=|- P(X>x)= V| 0.84134 =1 [P(X>x)= v 0.15866

4 = 0 2 4 -4 2 0 2 4

We can chop off the extra probability we don't need that Xis above 1.

P(X is between -1 and 1) = P(-1 < X < 1) = P(X > -1) - P(X > 1)
= 0.84134 - 0.15866 = 0.68286

Grinnell College Introduction to Statistics October 14, 2024 18 /27



Probabilities — Between

When the values we are looking at are the same but just with different
signs (like -1 and +1)

» We can write them in a specific way

» There is a shortcut on the app for getting the probability
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Probabilities — Between

Standard Normal: X ~ N(0, 1)
What about the probability that a case falls between -1 and 17

z=| \ P <X<[x)=v]| 068268 |
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P(|X| < 1) = 0.68286
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Probabilities — Between

Standard Normal: X ~ N(0, 1)
What about the probability that a case falls between -2 and 27

z=[B | 0.9545
0.4
0.3
0.2
0.1
&0.4 2 0 2 4

P(IX| < 2) = 0.9545
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Probabilities — Between

Standard Normal: X ~ N(0, 1)
What about the probability that a case falls between -1 and 17

z=3 | [PExI<X<[x)= | 09973
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P(IX| < 3) = 0.9973
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Summary
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Probabilities from R

We can use the "pnorm()” function in R to get these probabilities.

P tell the function what number you are trying to find the probability
more/less than

» tell the function the value of the mean
» tell the function the value of the std. dev.

Note: By default R will try to give you 'less than’ probabilities (also called lower tail
probabilities). To get 'greater than’ probabilities, put " Lower. Tail=FALSE" into the pnorm()
function.

> pnorm(-1, mean=0, sd=1)

[1] 0.1586553

> pnorm(-1, mean=0, sd=1, lower.tail = FALSE)
[1] 0.8413447

> pnorm(-1, mean=0, sd=1, lower.tail = FALSE)
- pnorm(l, mean=0, sd=1, lower.tail = FALSE)

[1] 0.6826895
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Central Limit Theorem

The Central Limit Theorem (CLT) is (possibly) the most important
result in all of statistics. It states:

1. If variable X has mean p and std.dev. o, and
2. If the number of observations in the sample (n) is large

3. then the sampling distribution for X (sample mean) is Normal with
mean 4 and standard error o/+/n.

X ~ N(u, 02/n)
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Central Limit Theorem

Important bits:
» CLT doesn’t require the pop. distribution look Normal

» What is considered large?

> A recommendation for being “sufficiently large” when working with
means is often to have at least 30 cases in your sample

> If the data are approximately normal or symmetric, a smaller sample
size (10 to 20) may be sufficient

> If the data are skewed and/or have extreme outliers, the sample size
may need to be higher than 30; possible more than 45. If the skew and
outliers are very extreme, the sample size may need to be higher than
around 200
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Summary

We learned a bit about the Normal distribution!
> what it looks like
» how to find probabilities with it
> how it relates to the sampling distribution (CLT)

Central Limit Theorem tells us that for large samples X ~ N(u, 02/n)

We don't need to take 5,000 samples to get the Standard Error any
more! We have a formula:

» SE=o0/y/n
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