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Review

▶ Regression models a linear relationship between response variable y
and explanatory variable X of the form

y = β0 + β1X + ϵ

▶ Can expand this to include combinations of explanatory variables
(quant. and cat.)
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Error Terms

y = β0 + Xβ1 + ϵ

Assumptions:

▶ Linear relationship between X and y

▶ Error term is normally distributed, ϵ ∼ N(0, σ)

▶ Error should be the same for all values of X , i.e., error same for all
observations

Analyzing the error terms gives us a way to test the assumptions of our
model
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Residuals

Visually, let’s review what residuals look like
▶ residuals represent how far off our prediction is
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Part 1: Checking Assumptions
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Residuals and assumptions

Three common ways to
investigate residuals visually:

1. Plot histogram of residuals
(normality)

2. Plot residuals against
covariate (linear trend,
changing variance)

3. Plot residuals against new
covariates (pattern
identification)
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Checking Normality

Histogram of Residuals should be ≈Normal if our model is doing well

Residuals should not have a pattern other than ’blob of points’ in a Resid.
vs. Expl. Var. plot
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Tests of linearity

Residual vs. Explanatory plot makes seeing non-linearity easier

▶ linear regression could still be useful!

▶ but we could also look at doing something more complicated if we really cared
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Tests of linearity

Sometimes a transformation of a variable can help correct trends (log(weight))
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Heteroscedasticity

Hetero = different, scedastic = random
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Part 2: Investigating Patterns
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Considering new covariates

Suppose I have:

▶ Quantitative outcome y

▶ Quantitative predictor X

▶ Categorical predictor gp

Grinnell College STA 209 December 9, 2024 12 / 26



Considering new covariates
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Considering new covariates
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Considering new covariates
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Considering new covariates
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Considering new covariates

these residuals are from the model that also includes the gp variable
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Considering new covariates

if we color by ’gp’ we see that the pattern is now random about 0
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Correlated Covariates

Consider a simple linear model in which a covariate X is used to predict
some value y

ŷ = β̂0 + X β̂1

The residuals associated with this describe the amount of variability that is
yet to be explained

e = y − ŷ

The idea is to find new covariates associated with this residual, in effect
“mopping up” the remaining uncertainty

Grinnell College STA 209 December 9, 2024 19 / 26



Considering new covariates

Last week (Friday) we considered an example predicting vehicle fuel
economy (mpg) with three separate models:

1. Using weight

2. Using weight and engine displacement

3. Using weight and quarter mile time
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Correlated Covariates

Let’s say I have a regression using wt to predict mpg. We are looking for a
new variable to add to the model. Which of these would be better to use?

▶ because wt and disp are correlated, much of the info in disp is already
contained within wt → probably not much improvement if we add it
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Correlated Covariates

1 > lm(mpg ˜ wt, mtcars) %>% summary()
2

3 Estimate Std. Error t value Pr(>|t|)
4 (Intercept) 37.285 1.878 19.86 < 0.000002 ***
5 wt -5.344 0.559 -9.56 0.000013 ***
6 R-squared = 0.75

1 > lm(mpg ˜ wt + disp, mtcars) %>% summary()
2

3 Estimate Std. Error t value Pr(>|t|)
4 (Intercept) 34.96055 2.16454 16.15 0.000000049 ***
5 wt -3.35083 1.16413 -2.8 0.0074 **
6 disp -0.01772 0.00919 -1.93 0.0636 .
7 R-squared = 0.78

1 > lm(mpg ˜ wt + qsec, mtcars) %>% summary()
2

3 Estimate Std. Error t value Pr(>|t|)
4 (Intercept) 19.746 5.252 3.76 0.00077 ***
5 wt -5.048 0.484 -10.43 0.000000000025 ***
6 qsec 0.929 0.265 3.51 0.00150 **
7 R-squared = 0.82
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Residual Plots
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Residual Plots
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Residual Plots
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Key Takeaways

1. Number of assumptions for linear model
▶ Linearity
▶ Normal errors
▶ Homoscedasticity

2. Need way to determine which new variables to add to model

3. Examining errors effective way to test assumptions and investigate
new covariates
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